

多段階インフレーションにょる原始ブラックホールタワー

多田祐一郎(名古屋大学) w/ 横山 修一郎 PRD 100, no. 2, 023537 (2019)

原始ブラックホール Carr & Hawking 1974

PBH tower in multi-phase inflation

- PBH質量

$$M_{\rm PBH} \sim M_{\rm H} = \frac{4\pi}{3} \rho H^{-3} = \frac{1}{2GH}$$
$$\sim M_{\odot} \left(\frac{t_{\rm PBH}}{10^{-5} \, \rm s}\right) \qquad M_{\odot} \simeq 2 \times 1$$
$$\sim M_{\odot} \left(\frac{k_{\rm PBH}}{4 \, \rm pc^{-1}}\right)^{-2}$$

 $M_{\rm Pl} \simeq 2 \times 10^{-5} \,\mathrm{g} \lesssim M_{\rm PBH} \lesssim 10^{15} M_{\odot}$

2 /16

原始ブラックホール Carr & Hawking 1974

- PBH質量

$$M_{\rm PBH} \sim M_{\rm H} = \frac{4\pi}{3}\rho H^{-3} = \frac{1}{2GH}$$
$$\sim M_{\odot} \left(\frac{t_{\rm PBH}}{10^{-5}\,\rm s}\right) \qquad M_{\odot} \simeq 2 \times$$
$$\sim M_{\odot} \left(\frac{k_{\rm PBH}}{4\,\rm pc^{-1}}\right)^{-2}$$

 $M_{\rm Pl} \simeq 2 \times 10^{-5} \,\mathrm{g} \lesssim M_{\rm PBH} \lesssim 10^{15} M_{\odot}$

PBH tower in multi-phase inflation

Yuichiro Tada

- Dynamical Friction
- Accretion Y
- Prim. PTB
- Hawking Y

Yuichiro Tada

4 /16 🦟

				v ، ر
1045	10 ⁵⁰		LIG	
µ-dist		GW170823	$39.6^{+10.0}_{-6.6}$	29.

10¹⁵

10¹⁰

mLQ

LSS

Virgo 2018

5 /16

 $0.08^{+0.20}_{-0.22}$

5-yr Optical Gravitational Lensing Experiment Nikur

階層的PBH質量スペクトルは実現できるか?

 $10^{\circ} 10^{\circ} 10^{\circ} 10^{\circ}$ ML LC timescale: $t_{\rm E}$ [days]

8 /16 🥿

Yuichiro Tada

 $\mathcal{P}_{\mathcal{R}} \sim 10^{-2}$

10 /16

極端な例

PBH tower in multi-phase inflation

Yuichiro Tada

クロスチェック

PBH tower in multi-phase inflation

Yuichiro Tada

超弦理論への示唆? dS swampland conjecture Ooguri & Vafa+ 2018 「UV完備な EFT では dS 真空は安定にならない?」 $\epsilon_V = \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \gtrsim \mathcal{O}(1) \quad \text{or} \quad \eta_V = M_{\rm Pl}^2 \frac{V''}{V} \lesssim -\mathcal{O}(1)$

– CMB scale? インフラトンがゆらぎを作るとすると

PBH tower in multi-phase inflation

各インフレーション相は長く続かない 多段階にして合わせて 60 e-folds

$$r_{\rm CMB}) = n_{\rm s} - 1 \simeq -6\epsilon_V + 2\eta_V$$

Yuichiro Tada

超弦理論への示唆? dS swampland conjecture Ooguri & Vafa+ 2018 「UV 完備な EFT では dS 真空は安定にならない?」 $\epsilon_V = \frac{M_{\rm Pl}^2}{2} \left(\frac{V'}{V}\right)^2 \gtrsim \mathcal{O}(1) \quad \text{or} \quad \eta_V = M_{\rm Pl}^2 \frac{V''}{V} \lesssim -\mathcal{O}(1)$

各インフレーション相は長く続かない 多段階にして合わせて 60 e-folds

– CMB scale? カーバトンなら Kogai, YT, Yokoyama in prep.

$$-0.035 \simeq \frac{d \log \mathcal{P}_{\zeta}}{d \log k} (k_{\text{CMB}}) = n_{\text{s}} - 1 \simeq -2\epsilon_{V} + \frac{2}{3} \frac{m_{\sigma}^{2}}{H^{2}}$$
Planck 2018

PBH tower in multi-phase inflation

15 /16

- 観測的に興味深い PBH の質量範囲は階層的

- - インフラトンゆらぎでは CMB ゆらぎが厳しい

- 2次重力波でチェック可能

PBH tower in multi-phase inflation

- 多段階インフレーションなら階層的 PBH 質量スペクトルを実現できる dS swampland conjecture は多段階インフレーションを支持?

Yuichiro Tada