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Since this is second-order in the perturbations, the

sourced GWs are intrinsically non-Gaussian. The source

is also local, depending only on spatial derivatives of the

perturbations, so the resulting bispectrum will peak in

momentum-space configurations where the wavevectors

have similar amplitude (no squeezed component). We

define the projector in Fourier space using the chiral ba-

sis

eTij`m(~k) = e
L
ij
(~k)⌦ e

L`m
(~k) + e

R
ij
(~k)⌦ e

R`m
(~k), (10)

where e
L,R
ij

are the polarisation tensors. In Eq. (9) the

scalar perturbation  (⌘,~k) can be written in terms of the

initial gauge-invariant comoving curvature perturbation

as [28]

 (⌘,~k) ⌘ 2

3
T (k⌘)⇣(~k), (11)

where the transfer function during radiation domi-

nation with constant degrees of freedom is T (x) =

(9/x
2
)
⇥
sin(x/

p
3)/(x/

p
3)� cos(x/

p
3)
⇤
. A straightfor-

ward calculation approximating the primordial perturba-

tions as Gaussian leads to the current abundance of GWs

[29]

⌦GW(f)

⌦r,0
=

cg

72

ˆ 1p
3

� 1p
3

dd

ˆ 1

1p
3

ds


(d

2 � 1/3)(s
2 � 1/3)

s2 � d2

�2

· P⇣

 
k
p
3

2
(s+ d)

!
P⇣

 
k
p
3

2
(s� d)

!
I2

(d, s), (12)

where k = 2⇡f , ⌦r,0 parameterises the current density

of radiation if the neutrinos were massless, cg ' 0.4 ac-

counts for the change of the e↵ective degrees of freedom

of the thermal radiation during the evolution (assuming

Standard Model physics), I2 ⌘ I2
c
+ I2

s
, and

Ic(x, y) = 4

ˆ 1

0
d⌧ ⌧(� sin ⌧)

h
2T (x⌧)T (y⌧)

+

⇣
T (x⌧) + x⌧ T

0
(x⌧)

⌘⇣
T (y⌧) + y⌧ T

0
(y⌧)

⌘i
,

(13)

Is(x, y) being the same function, but with sin ⌧ replaced

by (� cos ⌧), see Ref. [30]. For the monochromatic power

spectrum (Eq. (6)) we obtain (see also Refs. [16, 18, 30])

⌦GW(f)

⌦r,0
=

A
2
s
cgf

2

15552f2
?

✓
4f

2
?

f2
� 1

◆2

✓

✓
2� f

f?

◆
I2

✓
f?

f
,
f?

f

◆
,

(14)

where f? = k?/2⇡ and ✓(x) is the step function. The

current abundance of GWs is given in Fig. 2 with k? ⇠
kLISA = 2⇡fLISA and As ⇠ 0.033. Since the result is only a

function of f/f?, for other possible f? (with typical black

hole masses as indicated on the top axis) the predicted
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FIG. 2: The power spectrum of GWs generated by PBHs
compared with the power-law integrated sensitivity for LISA
estimated on the basis of the proposal [20]: the proposed de-
sign (4y, 2.5 Gm of length, 6 links) is anticipated to have a
sensitivity in between those called C1 and C2 in Ref. [32].
The spike is due to the trigonometric functions coming from
the radiation transfer functions in I2, giving a resonant ef-
fect at f ⇠ 2fLISA/

p
3, as explained in Ref. [16]. The spike

and slow fall-o↵ in power to low frequencies are an artefact
of assuming a monochromatic power spectrum; physical spec-
tra would typically give a smooth spectrum with white-noise
(/ f3) at low frequencies [29], but a similar overall amplitude.

spectrum simply shifts sideways in f . This shows that, if

PBHs of masses in the range 10
�15

M� . M . 10
�11

M�
form the dark matter (or even a fraction of it), LISA will

measure the GWs popping out during the PBH formation

time.

The primordial bispectrum of GWs. Since the GW

source is non-linear, the three-point correlator of the

GWs is not vanishing. Its computation is straightfor-

ward in the approximation of Gaussian initial perturba-

tions [29]

⌦
h�1

(⌘,~k1)h�2
(⌘,~k2)h�3

(⌘,~k3)
↵0
=

✓
8⇡

9

◆3̂

d
3
p1

1

k
3
1k

3
2k

3
3⌘

3

· e
⇤
�1
(~k1, ~p1)e

⇤
�2
(~k2, ~p2)e

⇤
�3
(~k3, ~p3)

P⇣(p1)

p
3
1

P⇣(p2)

p
3
2

P⇣(p3)

p
3
3

·
h⇣

cos(k1⌘)Ic
⇣
p1

k1
,
p2

k1

⌘
+ sin(k1⌘)Is

⇣
p1

k1
,
p2

k1

⌘⌘

· (1 ! 2 and 2 ! 3) · (1 ! 3 and 2 ! 1)

i
, (15)

where ~p2 = ~p1 � ~k1, ~p3 = ~p1 +
~k3, and where e

⇤
�
(~k, ~p) =

e
⇤ij
�

(~k)pipj are the polarisation tensors and � = L,R. The

bispectrum of GWs is dominated by the equilateral con-

figuration [26], k1 ' k2 ' k3 ⌘ k, as expected since it is

sourced by gradients of the curvature perturbations when

the latter re-enter the horizon. For the equilateral con-

figuration and monochromatic power spectrum (Eq. (6)),
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Figure 1. Scaling behaviour for MBH as function of (δ − δc)γ calculated for a
radiative perfect fluid. For MBH ! MH , the points are well-fitted by a scaling
law with γ = 0.357 and K = 4.02.

but terminated at low masses with the curve flattening out at a minimum value of

MBH/MH . However, we want to stress that great care needs to be taken in making a

comparison.
Firstly, in order to compare our results in figure 1 quantitatively with those in figures

7 & 8 of [10], we need to relate the two different mass normalizations used. The value

of MH appearing in (28) depends on the moment when it is measured. In common with

much of the literature, we have evaluated it at the time of horizon crossing, whereas in

[10] the perturbation was started already well inside the horizon and MH was evaluated

at that initial time. Making a direct comparison is then difficult. Also, the profiles
used for the perturbations were quite different. To get some idea, one can compare the

upper part of the plots, where one sees a deviation away from the scaling law at large

masses. In [10], this deviation occurs at MBH ∼ 0.1MH while we observe it occurring

at MBH ∼ MH . This indicates that the results in [10] probably need to be rescaled

upwards in mass by about one order of magnitude in order to make the comparison

(this has been confirmed in discussion with one of the previous authors), putting their
plateau at ∼ 10−2.5 in our units, with a divergence from the scaling behaviour at the

low-mass end beginning at (δ−δc) ∼ 10−8 using our measure of perturbation amplitude.

Their explanation for the minimum mass seen in their calculations was related to the

occurrence of strong shocks in the lower-mass cases. With our initial conditions, we do

not see these shocks (hence the continuation of the scaling law) but if we impose more

general non-linear initial conditions within the cosmological horizon scale, then we do

often see shocks which are consistent with those reported in [10] (although our code is

not equipped to handle the strong shock conditions which they saw and so we can see

Musco, Miller, Polnarev ’08

MPBH ≃ (μ − μth(k∙, ⋯))0.36 MH
R=H−1

2ù()ú

d ln MPBH

d ln(μ − μth)
≃ 0.36
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Since this is second-order in the perturbations, the

sourced GWs are intrinsically non-Gaussian. The source

is also local, depending only on spatial derivatives of the

perturbations, so the resulting bispectrum will peak in

momentum-space configurations where the wavevectors

have similar amplitude (no squeezed component). We

define the projector in Fourier space using the chiral ba-

sis

eTij`m(~k) = e
L
ij
(~k)⌦ e

L`m
(~k) + e

R
ij
(~k)⌦ e

R`m
(~k), (10)

where e
L,R
ij

are the polarisation tensors. In Eq. (9) the

scalar perturbation  (⌘,~k) can be written in terms of the

initial gauge-invariant comoving curvature perturbation

as [28]

 (⌘,~k) ⌘ 2

3
T (k⌘)⇣(~k), (11)

where the transfer function during radiation domi-

nation with constant degrees of freedom is T (x) =

(9/x
2
)
⇥
sin(x/

p
3)/(x/

p
3)� cos(x/

p
3)
⇤
. A straightfor-

ward calculation approximating the primordial perturba-

tions as Gaussian leads to the current abundance of GWs

[29]

⌦GW(f)

⌦r,0
=

cg

72

ˆ 1p
3

� 1p
3

dd

ˆ 1

1p
3

ds


(d

2 � 1/3)(s
2 � 1/3)

s2 � d2

�2

· P⇣

 
k
p
3

2
(s+ d)

!
P⇣

 
k
p
3

2
(s� d)

!
I2

(d, s), (12)

where k = 2⇡f , ⌦r,0 parameterises the current density

of radiation if the neutrinos were massless, cg ' 0.4 ac-

counts for the change of the e↵ective degrees of freedom

of the thermal radiation during the evolution (assuming

Standard Model physics), I2 ⌘ I2
c
+ I2

s
, and

Ic(x, y) = 4

ˆ 1

0
d⌧ ⌧(� sin ⌧)

h
2T (x⌧)T (y⌧)

+

⇣
T (x⌧) + x⌧ T

0
(x⌧)

⌘⇣
T (y⌧) + y⌧ T

0
(y⌧)

⌘i
,

(13)

Is(x, y) being the same function, but with sin ⌧ replaced

by (� cos ⌧), see Ref. [30]. For the monochromatic power

spectrum (Eq. (6)) we obtain (see also Refs. [16, 18, 30])

⌦GW(f)

⌦r,0
=

A
2
s
cgf

2

15552f2
?

✓
4f

2
?

f2
� 1

◆2

✓

✓
2� f

f?

◆
I2

✓
f?

f
,
f?

f

◆
,

(14)

where f? = k?/2⇡ and ✓(x) is the step function. The

current abundance of GWs is given in Fig. 2 with k? ⇠
kLISA = 2⇡fLISA and As ⇠ 0.033. Since the result is only a

function of f/f?, for other possible f? (with typical black

hole masses as indicated on the top axis) the predicted
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FIG. 2: The power spectrum of GWs generated by PBHs
compared with the power-law integrated sensitivity for LISA
estimated on the basis of the proposal [20]: the proposed de-
sign (4y, 2.5 Gm of length, 6 links) is anticipated to have a
sensitivity in between those called C1 and C2 in Ref. [32].
The spike is due to the trigonometric functions coming from
the radiation transfer functions in I2, giving a resonant ef-
fect at f ⇠ 2fLISA/

p
3, as explained in Ref. [16]. The spike

and slow fall-o↵ in power to low frequencies are an artefact
of assuming a monochromatic power spectrum; physical spec-
tra would typically give a smooth spectrum with white-noise
(/ f3) at low frequencies [29], but a similar overall amplitude.

spectrum simply shifts sideways in f . This shows that, if

PBHs of masses in the range 10
�15

M� . M . 10
�11

M�
form the dark matter (or even a fraction of it), LISA will

measure the GWs popping out during the PBH formation

time.

The primordial bispectrum of GWs. Since the GW

source is non-linear, the three-point correlator of the

GWs is not vanishing. Its computation is straightfor-

ward in the approximation of Gaussian initial perturba-

tions [29]

⌦
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(⌘,~k1)h�2
(⌘,~k2)h�3

(⌘,~k3)
↵0
=

✓
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9
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3
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3

· e
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⇤
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P⇣(p1)
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3
1

P⇣(p2)

p
3
2

P⇣(p3)

p
3
3

·
h⇣

cos(k1⌘)Ic
⇣
p1

k1
,
p2

k1

⌘
+ sin(k1⌘)Is

⇣
p1

k1
,
p2

k1

⌘⌘

· (1 ! 2 and 2 ! 3) · (1 ! 3 and 2 ! 1)

i
, (15)

where ~p2 = ~p1 � ~k1, ~p3 = ~p1 +
~k3, and where e

⇤
�
(~k, ~p) =

e
⇤ij
�

(~k)pipj are the polarisation tensors and � = L,R. The

bispectrum of GWs is dominated by the equilateral con-

figuration [26], k1 ' k2 ' k3 ⌘ k, as expected since it is

sourced by gradients of the curvature perturbations when

the latter re-enter the horizon. For the equilateral con-

figuration and monochromatic power spectrum (Eq. (6)),
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Since this is second-order in the perturbations, the

sourced GWs are intrinsically non-Gaussian. The source

is also local, depending only on spatial derivatives of the

perturbations, so the resulting bispectrum will peak in

momentum-space configurations where the wavevectors

have similar amplitude (no squeezed component). We

define the projector in Fourier space using the chiral ba-

sis

eTij`m(~k) = e
L
ij
(~k)⌦ e

L`m
(~k) + e

R
ij
(~k)⌦ e

R`m
(~k), (10)

where e
L,R
ij

are the polarisation tensors. In Eq. (9) the

scalar perturbation  (⌘,~k) can be written in terms of the

initial gauge-invariant comoving curvature perturbation

as [28]

 (⌘,~k) ⌘ 2

3
T (k⌘)⇣(~k), (11)

where the transfer function during radiation domi-

nation with constant degrees of freedom is T (x) =

(9/x
2
)
⇥
sin(x/

p
3)/(x/

p
3)� cos(x/

p
3)
⇤
. A straightfor-

ward calculation approximating the primordial perturba-

tions as Gaussian leads to the current abundance of GWs

[29]

⌦GW(f)

⌦r,0
=

cg

72

ˆ 1p
3

� 1p
3

dd

ˆ 1

1p
3

ds


(d

2 � 1/3)(s
2 � 1/3)

s2 � d2

�2

· P⇣

 
k
p
3

2
(s+ d)

!
P⇣

 
k
p
3

2
(s� d)

!
I2

(d, s), (12)

where k = 2⇡f , ⌦r,0 parameterises the current density

of radiation if the neutrinos were massless, cg ' 0.4 ac-

counts for the change of the e↵ective degrees of freedom

of the thermal radiation during the evolution (assuming

Standard Model physics), I2 ⌘ I2
c
+ I2

s
, and

Ic(x, y) = 4

ˆ 1

0
d⌧ ⌧(� sin ⌧)

h
2T (x⌧)T (y⌧)

+

⇣
T (x⌧) + x⌧ T

0
(x⌧)

⌘⇣
T (y⌧) + y⌧ T

0
(y⌧)

⌘i
,

(13)

Is(x, y) being the same function, but with sin ⌧ replaced

by (� cos ⌧), see Ref. [30]. For the monochromatic power

spectrum (Eq. (6)) we obtain (see also Refs. [16, 18, 30])

⌦GW(f)

⌦r,0
=

A
2
s
cgf

2

15552f2
?

✓
4f

2
?

f2
� 1

◆2

✓

✓
2� f

f?

◆
I2

✓
f?

f
,
f?

f

◆
,

(14)

where f? = k?/2⇡ and ✓(x) is the step function. The

current abundance of GWs is given in Fig. 2 with k? ⇠
kLISA = 2⇡fLISA and As ⇠ 0.033. Since the result is only a

function of f/f?, for other possible f? (with typical black

hole masses as indicated on the top axis) the predicted
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10-15

10-14

10-13

10-12
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10-10

10-9
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10-6
10-1510-1410-1310-1210-1110-1010-910-810-7

LISA

FIG. 2: The power spectrum of GWs generated by PBHs
compared with the power-law integrated sensitivity for LISA
estimated on the basis of the proposal [20]: the proposed de-
sign (4y, 2.5 Gm of length, 6 links) is anticipated to have a
sensitivity in between those called C1 and C2 in Ref. [32].
The spike is due to the trigonometric functions coming from
the radiation transfer functions in I2, giving a resonant ef-
fect at f ⇠ 2fLISA/

p
3, as explained in Ref. [16]. The spike

and slow fall-o↵ in power to low frequencies are an artefact
of assuming a monochromatic power spectrum; physical spec-
tra would typically give a smooth spectrum with white-noise
(/ f3) at low frequencies [29], but a similar overall amplitude.

spectrum simply shifts sideways in f . This shows that, if

PBHs of masses in the range 10
�15

M� . M . 10
�11

M�
form the dark matter (or even a fraction of it), LISA will

measure the GWs popping out during the PBH formation

time.

The primordial bispectrum of GWs. Since the GW

source is non-linear, the three-point correlator of the

GWs is not vanishing. Its computation is straightfor-

ward in the approximation of Gaussian initial perturba-

tions [29]

⌦
h�1

(⌘,~k1)h�2
(⌘,~k2)h�3

(⌘,~k3)
↵0
=

✓
8⇡

9

◆3̂

d
3
p1

1

k
3
1k

3
2k

3
3⌘

3

· e
⇤
�1
(~k1, ~p1)e

⇤
�2
(~k2, ~p2)e

⇤
�3
(~k3, ~p3)

P⇣(p1)

p
3
1

P⇣(p2)

p
3
2

P⇣(p3)

p
3
3

·
h⇣

cos(k1⌘)Ic
⇣
p1

k1
,
p2

k1

⌘
+ sin(k1⌘)Is

⇣
p1

k1
,
p2

k1

⌘⌘

· (1 ! 2 and 2 ! 3) · (1 ! 3 and 2 ! 1)

i
, (15)

where ~p2 = ~p1 � ~k1, ~p3 = ~p1 +
~k3, and where e

⇤
�
(~k, ~p) =

e
⇤ij
�

(~k)pipj are the polarisation tensors and � = L,R. The

bispectrum of GWs is dominated by the equilateral con-

figuration [26], k1 ' k2 ' k3 ⌘ k, as expected since it is

sourced by gradients of the curvature perturbations when

the latter re-enter the horizon. For the equilateral con-

figuration and monochromatic power spectrum (Eq. (6)),
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□ hk = S(ζp, ζk−p) ⇒ hk = ∫ dt′￼Gk(t, t′￼)Sk(ζ, ζ; t′￼)

⇒ ⟨hkh′￼k⟩ = ∫ dt′￼dt′￼′￼G(t, t′￼)G(t, t′￼′￼)⟨Sk(ζ, ζ; t′￼)S′￼k(ζ, ζ; t′￼)⟩
ζ = ζG + FNLζ2

G + GNLζ3
G + ⋯

h h
ζ

ζ

ζ

ζ

ζG

ζG

h h
ζ

ζ

ζ

ζ

ζG

ζG

ζG

FNL

FNL

+

Adshead+ ‘21
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Abe, Inui, YT, Yokoyama in prep.

GW spectrum
ζ = −

1
3

log (1 − 3ζG) = ζG +
3
2

ζ2
G + 3ζ3

G + ⋯
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cf. Yuan+ ’19, Zhou ‘21

h ∼ ζ3, ζ4, ⋯
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ψ(r) =
1
σ2

0 ∫
dk
k

sin kr
kr

𝒫g(k)

̂g(r) = μ [ 1
1 − γ2 (ψ(r) +

1
3

R2
∙ Δψ(r)) − k2

∙
1

γ(1 − γ2)
σ0

σ2 (γ2ψ(r) +
1
3

R2
∙ Δψ(r))]

σ2
n = ∫

dk
k

k2n𝒫g(k), γ =
⟨k2⟩

⟨k4⟩
, R∙ =

3⟨k2⟩
⟨k4⟩

npk(μ, k∙) dμ dk∙ =
1

VΩ ∫Ω
d3x ∑

∇g(xp)=0

δ(3)(x − xp)δ(μ − μ(xp))δ(k∙ − k∙(xp)) dμ dk∙

=
2 × 33/2

(2π)3/2
μk∙

σ2
2

σ0σ1
f ( μk2

∙

σ2 ) P1 ( μ
σ0

,
μk2

∙

σ2 ) dμ dk∙

f(ξ) =
1
2

ξ(ξ2 − 3) erf [ 1
2

5
2

ξ] + erf [ 5
2

ξ] +
2

5π {( 8
5

+
31
4

ξ2) exp [−
5
8

ξ2] + (−
8
5

+
1
2

ξ2) exp [−
5
2

ξ2]} P1(ν, ξ) =
1

2π 1 − γ2
exp [−

1
2 (ν2 +

(ξ − γν)2

1 − γ2 )]
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ζ = −
1
3

log (1 − 3ζG)
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