

2022．06．07＠立教大学理論物理学研究室七之十一
原始ブラツクホールのピーク理論と非ガウス尾
多田祐一郎 名古屋大学•KEK
w／K．T．Abe，A．Escrivà，R．Inui，N．Kitajima，S．Yokoyama，C．M．Yoo 2109．00791，2202．01028，in prep．

2022．06．07＠立教大学理論物理学研究室也：十一原始ブラツクホールのピーク理論と非ガウス尾

1．原始ララツクホール

3．ピーク理論
4．誘導背景重力波

放射優勢宇宙

密度ゆらぎ $\mathcal{O}(1)$

原始 $\mathcal{B} \boldsymbol{H}$

～Hubble サイズ

- 暗黒物質？
- LVK 合体重力波？
- 超大質量 BHの種？
- OGLE 重カレンズ天体？
- 第 9 惑星？
- r過程の引き金？

存在量？

Heasy-tailed Cursature Perturfation

δN 形式

x

－線形摂動理論

$$
\left\{\begin{array}{l}
\phi(\tau, \mathbf{x})=\phi_{0}(\tau)+\delta \phi(\tau, \mathbf{x}) \\
g_{\mu \nu}(\tau, \mathbf{x})=a^{2}(\tau) \eta_{\mu \nu}+h_{\mu \nu}(\tau, \mathbf{x})
\end{array}\right.
$$

ρ_{r} ：Big－Bang universe

δN 形式

－δN 形式（非摂動）Lyth，Malik，Sasaki ${ }^{\circ} 4$

$$
\begin{aligned}
\zeta & =\delta N=N\left(\phi_{0}+\delta \phi\right)-N\left(\phi_{0}\right) \\
& =-H \frac{\delta \rho}{\dot{\rho}_{0}} \quad(\text { flat slice })
\end{aligned}
$$

ρ_{r} ：Big－Bang universe
－for small $\zeta \ll 1$
$\zeta \simeq N_{\phi} \delta \phi:$ Gaussian
－for large $\zeta \sim 1$
$\zeta=\zeta_{\mathrm{NL}}(\delta \phi)$ ：Gaussian？

Exp．－tail

－Exact Ultra SR

$\boldsymbol{\lambda} \zeta=\delta N=-\frac{1}{3} \ln \left(1-3 H \frac{\delta \phi}{\left|\dot{\phi}_{\mathrm{f}}\right|}\right)$
Cai＋＇ 18

$$
\zeta=-\frac{1}{3} \ln \left(1-3 \zeta_{\mathrm{G}}\right) \Leftrightarrow \zeta_{\mathrm{G}}=\frac{1}{3}\left(1-\mathrm{e}^{-3 \zeta}\right)
$$

$$
=\zeta_{\mathrm{G}}+\frac{3}{5} \times \frac{5}{2} \zeta_{f_{\mathrm{G}}^{2}}^{2}+\cdots
$$

Atal＋ 19 Ezquiaga＋＇19 Biagetti＋＇21
$\ln P(\zeta)$

> Gaussian

PBH $\zeta \sim 1$

Peak theory for PBH

質量関数

最も単純なアプローチ

Carr＇75（Press \＆Schechter＇74）

$\delta_{R}(\mathbf{x})=\int \mathrm{d}^{3} y W_{R}(\mathbf{x}-\mathbf{y}) \delta(\mathbf{y}) \gtrsim \frac{1}{3}\left(=\frac{p}{\rho}\right)$
\Rightarrow 原始 BH ！！

＊質量 $\quad:\left.M_{\mathrm{PBH}} \sim M_{H}\right|_{R=H^{-1}}=\left.\frac{4 \pi}{3} \rho R^{3}\right|_{R=H^{-1}}$

質量関数

最も単純なアプローチ
Carr＇75（Press \＆Schechter＇74）
－いつでも＂ $1 / 3^{\prime}$ ？

- 窓関数は何を使う？
- δ_{R} はガウス乱数？
－$\left.M_{\mathrm{PBH}} \stackrel{?}{\sim} M_{H}\right|_{R=H^{-1}}$
－ピークのカウントは正しい？

第一原理
－インフレ－ション理論

セ゚－理論

Bardeen，Bond，Kaiser，Szalay＇86

Yoo，Harada，Garriga，Kohri＇18
Yoo，Gong，Yokoyama＇19
Yoo，Harada，Hirano，Kohri＇20
＊典型的な球対称ピーク形

$$
\hat{g}(r)=\hat{g}\left(\psi(r) ; \mu, k_{\bullet}\right)
$$

＊実空間数密度

$$
n_{\mathrm{pk}}\left(\mu, k_{0}\right) \mathrm{d} \mu \mathrm{~d} k .
$$

Compaction Func．

$$
\begin{aligned}
& \text { Shibata \& Sasaki '99 } \\
& \text { Harada, Yoo, Nakama, Koga } 15 \\
& \begin{aligned}
\mathscr{C}=G & \frac{M_{\mathrm{MS}}-M_{\mathrm{b} . \mathrm{g} .}}{R}= \\
& \frac{1}{V(R)} \int_{0}^{R} \delta \times\left. 4 \pi R^{2} \mathrm{~d} R\right|_{R=H^{-1}}=\frac{2}{3}\left[1-\left(1+r \zeta^{\prime}\right)^{2}\right] \stackrel{?}{>} \mathscr{C}_{\mathrm{th}} \\
\text { 密度ゆらぎの平均 } & \begin{array}{l}
\text { 超 Hubble 保存 }
\end{array}
\end{aligned} \\
& \Phi \xrightarrow{R=a \mathrm{e}^{\zeta} r} \underset{M_{\mathrm{MS}}}{ }
\end{aligned}
$$

Compaction Func．

Shibata \＆Sasaki＇99
 Harada，Yoo，Nakama，Koga 15

$$
\begin{aligned}
\mathscr{C}=G \frac{M_{\mathrm{MS}}-M_{\mathrm{b} . \mathrm{g} .}}{R}= & \frac{1}{V(R)} \int_{0}^{R} \delta \times\left. 4 \pi R^{2} \mathrm{~d} R\right|_{R=H^{-1}}=\frac{2}{3}\left[1-\left(1+r \zeta^{\prime}\right)^{2}\right] \text { 伦 } \mathrm{th} \\
& \text { 密度ゆらぎの平均 }
\end{aligned}
$$

Compaction Func．の平均はぼぼ普遍的指標

$$
\begin{aligned}
& \overline{\mathscr{C}}=\frac{1}{V(R)} \int_{0}^{R} \mathscr{C} \times 4 \pi R^{2}>\overline{\mathscr{C}}_{\mathrm{th}} \simeq \frac{2}{5} \\
& \left(\rightarrow \mu>\mu_{\mathrm{th}}\left(k_{\bullet}, \cdots\right)\right) \\
& -f_{\mathrm{NL}}>\underset{\substack{\text { Atal, Cid, Escriva., Garriga 199 } \\
\text { Escrivi, Germani, Sheth '19 }}}{0, \exp .- \text { tail, }} \\
& \text { - Fitting for } f_{\mathrm{NL}}<0 \\
& \text { Escrivà, YT, Yokoyama, Yoo, '22 }
\end{aligned}
$$

質量

Choptuik＇93
Niemeyer \＆Jedamzik＇94，＇97

＊スケール則

$\left.M_{\mathrm{PBH}} \simeq\left(\mu-\mu_{\mathrm{th}}\left(k_{\mathrm{o}}, \cdots\right)\right)^{0.36} M_{H}\right|_{R=H^{-1}}$

Musco，Miller，Polnarev＇08

結果（ガウシアン）
Kitajima，YT，Yokoyama，Yoo＇21

$$
\mathscr{P}_{\zeta_{\mathrm{G}}}=A_{\zeta_{\mathrm{G}}} \delta\left(\log k-\log k_{*}\right)
$$

local－type NG

 Yoo，Gong，Yokoyama＇19$$
\hat{\zeta}(r)=\mathscr{F}_{\mathrm{NG}}\left(\hat{\zeta}_{\mathrm{G}}(r)\right)
$$

$$
\zeta(\mathbf{x})=\mathscr{F}_{\mathrm{NG}}\left(\zeta_{\mathrm{G}}(\mathbf{x})\right)
$$

例えば…

$$
-\zeta=\zeta_{G}+\frac{3}{5} f_{N L} \zeta_{G}^{2}
$$

$$
-\zeta=-\frac{1}{3} \log \left(1-3 \zeta_{\mathrm{G}}\right): \text { "exp-tail" in USR }
$$

$$
=\zeta_{\mathrm{G}}+\frac{3}{5} \times \frac{5}{2} \zeta_{\mathrm{G}}^{2}+\cdots
$$

Escrivà，YT，Yokoyama，Yoo＇22

$$
\mathscr{P}_{\zeta_{\mathrm{G}}}=A_{\zeta_{\mathrm{G}}} \delta\left(\log k-\log k_{*}\right)
$$

tuned $A_{\zeta \mathrm{G}}$

exp．－tail

$$
\zeta=-\frac{1}{3} \log \left(1-3 \zeta_{\mathrm{G}}\right)
$$

tuned $A_{\zeta \text { G }}$

$$
\begin{aligned}
k_{*} & =1.56 \times 10^{13} \mathrm{Mpc}^{-1} \\
M_{k_{*}} & =10^{20} \mathrm{~g}
\end{aligned}
$$

Induced (GWs

誘導重力波

誘導重力波

YT \＆Vennin＇21 インフレ－ション
大きい初期ゆらぎ
Abe，Inui，YT，Yokoyama in prep．
2 次侨道背景重力波

ダイアグラム Adshead＋21

$$
\begin{aligned}
& \square h_{\mathbf{k}}=S\left(\zeta_{\mathbf{p}}, \zeta_{\mathbf{k}-\mathbf{p}}\right) \Rightarrow h_{\mathbf{k}}=\int \mathrm{d} t^{\prime} G_{\mathbf{k}}\left(t, t^{\prime}\right) S_{\mathbf{k}}\left(\zeta, \zeta ; t^{\prime}\right) \\
& \Rightarrow\left\langle h_{\mathbf{k}} h_{\mathbf{k}}^{\prime}\right\rangle=\int \mathrm{d} t^{\prime} \mathrm{d} t^{\prime \prime} G\left(t, t^{\prime}\right) G\left(t, t^{\prime}\right)\left\langle S_{\mathbf{k}}\left(\zeta, \zeta ; t^{\prime}\right) S_{\mathbf{k}}^{\prime}\left(\zeta, \zeta ; t^{\prime}\right)\right\rangle \\
& \zeta=\zeta_{\mathrm{G}}+F_{\mathrm{NL}} \zeta_{\mathrm{G}}^{2}+G_{\mathrm{NL}} \zeta_{\mathrm{G}}^{3}+\cdots
\end{aligned}
$$

ダイアグラム Abe，Invi，YT，Yokoyama in prep．

GW spectrum
Abe，Invi，YT，Yokoyama in prep．

$$
\zeta=-\frac{1}{3} \log \left(1-3 \zeta_{\mathrm{G}}\right)=\zeta_{\mathrm{G}}+\frac{3}{2} \zeta_{\mathrm{G}}^{2}+3 \zeta_{\mathrm{G}}^{3}+\cdots
$$

＊$h \sim \zeta^{3}, \zeta^{4}, \ldots$
cf．Yuan＋＇19，Zhou＇21

結㷍

- exp－tail：\quad～ 1 でガウシアンとは限らない
- 原始 BH のピーク理論
- 質量のスケール則やらの非ガウス性にも対応
- PSより非ガウス性の影響大
- 誘導重力波
- exp－tail でも LISA で見える（heavier－tail だと…？of．Hooshangi＋＇21．Cai＋＇21）
- UV 側に非ガウス性の情報？

補遺

$$
\begin{gathered}
\hat{g}(r)=\mu\left[\frac{1}{1-\gamma^{2}}\left(\psi(r)+\frac{1}{3} R_{\bullet}^{2} \Delta \psi(r)\right)-k_{\bullet}^{2} \frac{1}{\gamma\left(1-\gamma^{2}\right)} \frac{\sigma_{0}}{\sigma_{2}}\left(\gamma^{2} \psi(r)+\frac{1}{3} R_{\bullet}^{2} \Delta \psi(r)\right)\right] \\
\sigma_{n}^{2}=\int \frac{\mathrm{d} k}{k} k^{2 n} \mathscr{P}_{g}(k), \quad \gamma=\frac{\left\langle k^{2}\right\rangle}{\sqrt{\left\langle k^{4}\right\rangle}}, \quad R_{\bullet}=\sqrt{\frac{3\left\langle k^{2}\right\rangle}{\left\langle k^{4}\right\rangle}} \quad \psi(r)=\frac{1}{\sigma_{0}^{2}} \int \frac{\mathrm{~d} k}{k} \frac{\sin k r}{k r} \mathscr{P}_{g}(k) \\
n_{\mathrm{pk}}\left(\mu, k_{\bullet}\right) \mathrm{d} \mu \mathrm{~d} k_{\bullet}=\left[\frac{1}{V_{\Omega}} \int_{\Omega} \mathrm{d}^{3} x \sum_{\nabla g\left(\mathbf{x}_{\mathrm{p}}\right)=0} \delta^{(3)}\left(\mathbf{x}-\mathbf{x}_{\mathrm{p}}\right) \delta\left(\mu-\mu\left(\mathbf{x}_{p}\right)\right) \delta\left(k_{\bullet}-k_{\bullet}\left(\mathbf{x}_{\mathrm{p}}\right)\right)\right] \mathrm{d} \mu \mathrm{~d} k_{\bullet} \\
=\frac{2 \times 3^{3 / 2}}{(2 \pi)^{3 / 2}} \mu k_{\bullet} \frac{\sigma_{2}^{2}}{\sigma_{0} \sigma_{1}} f\left(\frac{\mu k_{\bullet}^{2}}{\sigma_{2}}\right) P_{1}\left(\frac{\mu}{\sigma_{0}}, \frac{\mu k_{\bullet}^{2}}{\sigma_{2}}\right) \mathrm{d} \mu \mathrm{~d} k_{\bullet}
\end{gathered}
$$

$$
f(\xi)=\frac{1}{2} \xi\left(\xi^{2}-3\right)\left(\operatorname{erf}\left[\frac{1}{2} \sqrt{\frac{5}{2}} \xi\right]+\operatorname{erf}\left[\sqrt{\frac{5}{2}} \xi\right]\right)+\sqrt{\frac{2}{5 \pi}}\left\{\left(\frac{8}{5}+\frac{31}{4} \xi^{2}\right) \exp \left[-\frac{5}{8} \xi^{2}\right]+\left(-\frac{8}{5}+\frac{1}{2} \xi^{2}\right) \exp \left[-\frac{5}{2} \xi^{2}\right]\right\} \quad P_{1}(\nu, \xi)=\frac{1}{2 \pi \sqrt{1-\gamma^{2}}} \exp \left[-\frac{1}{2}\left(\nu^{2}+\frac{(\xi-\gamma \nu)^{2}}{1-\gamma^{2}}\right)\right]
$$

補遺

